Supply chain risk management: A content analysis-based review of existing and emerging topics

Emrouznejad, A. S. Abbasi, Ç. Sıcakyüz (2023) Supply chain risk management: A content analysis-based review of existing and emerging topics, Supply Chain Analytics, 3: 100031. https://doi.org/10.1016/j.sca.2023.100031

 

Please wait while flipbook is loading. For more related info, FAQs and issues please refer to DearFlip WordPress Flipbook Plugin Help documentation.

 

List of papers on Fuzzy Data Envelopment Analysis:

  • Abbasi, B. Erdebilli, Green closed-loop supply chain networks’ response to various carbon policies during COVID-19, Sustainability 15 (4) (2023) 3677, https://doi.org/10.3390/su15043677.
  • Abbasi, Ç. Sıcakyüz, B. Erdebilli, Designing the home healthcare supply chain during a health crisis, J. Eng. Res. (2023), 100098, https://doi.org/10.1016/j. jer.2023.100098. Emrouznejad et al. Supply Chain Analytics 3 (2023) 100031 21
  • Abbasi, Environmental impact assessment with rapid impact assessment matrix method during the COVID-19 pandemic, A case Study Tehran (2023), https://doi. org/10.21203/rs.3.rs-3125845/v1.
  • Abbasi, H.A. Choukolaei, A systematic review of green supply chain network design literature focusing on carbon policy, Decis. Anal. J. (2023), 100189, https://doi.org/10.1016/j.dajour.2023.100189.
  • Abbasi, H.A. Khalili, M. Daneshmand-Mehr, M. Hajiaghaei-Keshteli, Performance measurement of the sustainable supply chain during the covid-19 pandemic: a real-life case study, Found. Comput. Decis. Sci. 47 (4) (2022) 327–358, https://doi.org/10.2478/fcds-2022-0018.
  • Ahlqvist, A. Norrman, M. Jahre, Supply chain risk governance: towards a conceptual multi-level framework, Oper. Supply Chain Manag. 13 (2020) 382–
  • Ahmadi Choukolaei, M. Jahangoshai Rezaee, P. Ghasemi, M. Saberi, Efficient crisis management by selection and analysis of relief centers in disaster integrating GIS and multicriteria decision methods: a case study of Tehran, Math. Probl. Eng. 2021 (2021) 1–
  • Babu, S. Yadav, A supply chain risk assessment index for small and medium enterprises in post COVID-19 era, Supply Chain Anal. (2023), 100023, https:// doi.org/10.1016/j.sca.2023.100023.
  • Bandaly, L. Shanker, Y. Kahyaoglu, et al., Supply chain risk management-II: a review of individual and integrated operational and financial approaches, Risk Manag. 15 (2013) 1–
  • Baryannis, S. Validi, S. Dani, G. Antoniou, Supply Chain Risk Management and Artificial Intelligence: State of the Art and Future Research Directions, in: International Journal of Production Research, 57, 2019, pp. 2179–
  • Behzadi, M.J. O’Sullivan, T.L. Olsen, A. Zhang, Agribusiness supply chain risk management: a review of quantitative decision models, Omega (U. Kingd. ) 79 (2018) 21–
  • Blackhurst, C.W. Craighead, D. Elkins, R.B. Handfield, An empirically derived agenda of critical research issues for managing supply-chain disruptions, Int J. Prod. Res 43 (2005) 4067–4081, https://doi.org/10.1080/00207540500151549.
  • H. Chiu, T.M. Choi, Supply chain risk analysis with mean-variance models: a technical review, Ann. Oper. Res 240 (2016) 489–507, https://doi.org/10.1007/ s10479-013-1386-4.
  • R. Vishnu, R. Sridharan, R. Kumar, Supply chain risk management: models and methods, Int J. Manag. Decis. Mak. 18 (2019) 31–75.
  • S. Tang, Perspectives in supply chain risk management, Int J. Prod. Econ. 103 (2006) 451–488.
  • W. Craighead, J. Blackhurst, M.J. Rungtusanatham, R.B. Handfield, The severity of supply chain disruptions: design characteristics and mitigation capabilities, Decis. Sci. 38 (2007) 131–156, https://doi.org/10.1111/j.1540- 5915.2007.00151.
  • -Y. Chu, K. Park, G.E. Kremer, A global supply chain risk management framework: an application of text-mining to identify region-specific supply chain risks, Adv. Eng. Inform. (2020) 45.
  • Christopher, H. Lee, Mitigating supply chain risk through improved confidence, Int. J. Phys. Distrib. Logist. Manag. 34 (2004) 388–396, https://doi. org/10.1108/09600030410545436.
  • Christopher, H. Peck, Building the resilient supply chain, Int. J. Logist. Manag. 15 (2004) 1–14, https://doi.org/10.1108/09574090410700275.
  • Colicchia, F. Strozzi, Supply chain risk management: a new methodology for a systematic literature review, Supply Chain Manag. 17 (2012) 403–
  • Collatuzzo, P. Boffetta, Cancers attributable to modifiable risk factors: a road map for prevention, Annu Rev. Public Health 44 (2023) 279–
  • Cunha, P. Ceryno, A. Leiras, Social supply chain risk management: a taxonomy, a framework, and a research agenda, J. Clean. Prod. 220 (2019) 1101–
  • Kershenobich, F. Higuera-de-la Tijera, N. Flores, et al., Hepatitis C screening and detection program in a large population: Epidemiological transition and characterization of the disease, Liver Int. (2023).
  • Shi, A review of enterprise supply chain risk management, J. Syst. Sci. Syst. Eng. 13 (2004) 219–244.
  • A. Rangel, T.K. De Oliveira, M.S.A. Leite, Supply chain risk classification: discussion and proposal, Int J. Prod. Res 53 (2015) 6868–6887, https://doi.org/ 10.1080/00207543.2014.910620.
  • C. Evison, P.D. Kremer, J. Guiver, Mass timber construction in Australia and New Zealand-status, and economic and environmental influences on adoption, Wood Fiber Sci. 50 (2018) 128–138, https://doi.org/10.22382/wfs-2018-046.
  • L. Olson, D. Dash, A review of enterprise risk management in supply chain, Kybernetes 39 (2010) 694–706.
  • Debnath, A.M. Bari, M.M. Haq, D.A. de Jesus Pacheco, M.A. Khan, An integrated stepwise weight assessment ratio analysis and weighted aggregated sum product assessment framework for sustainable supplier selection in the healthcare supply chains, Supply Chain Anal. 1 (2023), 100001, https://doi.org/ 10.1016/j.sca.2022.100001.
  • Deiva Ganesh, P. Kalpana, Future of artificial intelligence and its influence on supply chain risk management – a systematic review, Comput. Ind. Eng. (2022) 169, https://doi.org/10.1016/j.cie.2022.108206.
  • Deretarla, B. Erdebilli, M. Gündo˘gan, An integrated analytic hierarchy process and complex proportional assessment for vendor selection in supply chain management, Decis. Anal. J. 6 (2023), 100155, https://doi.org/10.1016/j. dajour.2022.100155.
  • J. Perkins, R. Ashauer, L. Burgoon, et al., Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment, Environ. Toxicol. Chem. 38 (2019) 1850–1865.
  • Er Kara, S.Ü. Oktay Fırat, A. Ghadge, A data mining-based framework for supply chain risk management, Comput. Ind. Eng. (2020) 139, https://doi.org/ 10.1016/j.cie.2018.12.017.
  • Fahimnia, C.S. Tang, H. Davarzani, J. Sarkis, Quantitative models for managing supply chain risks: a review, Eur. J. Oper. Res 247 (2015) 1–
  • Fan, M. Stevenson, A review of supply chain risk management: definition, theory, and research agenda, Int. J. Phys. Distrib. Logist. Manag. 48 (2018) 205–
  • Fernando, M.L. Tseng, I.S. Wahyuni-Td, A.B.L. de Sousa Jabbour, C. J. Chiappetta Jabbour, C. Foropon, Cyber supply chain risk management and performance in industry 4.0 era: information system security practices in Malaysia, J. Ind. Prod. Eng. 40 (2) (2023) 102–
  • M. Magableh, Supply chains and the COVID-19 pandemic: a comprehensive framework. European, Manag. Rev. 18 (2021) 363–382.
  • Ghadge, S. Dani, R. Kalawsky, Supply chain risk management present and future scope, Int. J. Logist. Manag. 23 (2012) 313–
  • Ghasemi, F. Goodarzian, A. Abraham, A new humanitarian relief logistic network for multi-objective optimization under stochastic programming, Appl. Intell. 52 (12) (2022) 13729–
  • Ghasemi, H. Hemmaty, A. Pourghader Chobar, M.R. Heidari, M. Keramati, A multi-objective and multi-level model for location-routing problem in the supply chain based on the customer’s time window, J. Appl. Res. Ind. Eng. (2022).
  • Ghasemi, H.A. Khalili, A.P. Chobar, S. Safavi, F.M. Hejri, A new multi-echelon mathematical modeling for pre-and post-disaster blood supply chain: robust optimization approach, Discret. Dyn. Nat. Soc. 2022 (2022) 1–
  • Giannakis, M. Louis, A multi-agent based framework for supply chain risk management, J. Purch. Supply Manag. 17 (2011) 23–31, https://doi.org/ 10.1016/j.pursup.2010.05.001.
  • Guo, J. Lu, H. Tan, et al., Risk factors on admission associated with hospital length of stay in patients with COVID-19: a retrospective cohort study, Sci. Rep. 11 (2021) 7310.
  • Gurtu, J. Johny, Supply chain risk management: literature review, Risks 9 (2021) 1–
  • C. Pfohl, H. K¨ohler, D. Thomas, State of the art in supply chain risk management research: empirical and conceptual findings and a roadmap for the implementation in practice, Logist. Res. 2 (2010) 33–44, https://doi.org/ 10.1007/s12159-010-0023-8.
  • Hamdi, A. Ghorbel, F. Masmoudi, L. Dupont, Optimization of a supply portfolio in the context of supply chain risk management: a literature review, J. Intell. Manuf. 29 (2018) 763–
  • Heckmann, T. Comes, S. Nickel, A critical review on supply chain risk – definition, measure, and modeling, Omega 52 (2015) 119–
  • Ho, T. Zheng, H. Yildiz, S. Talluri, Supply chain risk management: a literature review, Int J. Prod. Res 53 (2015) 5031– A. Emrouznejad et al. Supply Chain Analytics 3 (2023) 100031 20
  • Y. Wuni, G.Q.P. Shen, A.T. Mahmud, Critical risk factors in the application of modular integrated construction: a systematic review, Int. J. Constr. Manag. 22 (2022) 133–147, https://doi.org/10.1080/15623599.2019.1613212.
  • Ivanov, A. Dolgui, B. Sokolov, The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics, Int J. Prod. Res 57 (2019) 829–846, https://doi.org/10.1080/00207543.2018.1488086.
  • Ivanov, A. Dolgui, Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak, Int J. Prod. Res 58 (2020) 2904–2915, https://doi.org/ 10.1080/00207543.2020.1750727.
  • B. Oliveira, M. Jin, R.S. Lima, et al., The role of simulation and optimization methods in supply chain risk management: Performance and review standpoints, Simul. Model Pr. Theory 92 (2019) 17–44.
  • -H. Thun, D. Hoenig, An empirical analysis of supply chain risk management in the German automotive industry, Int J. Prod. Econ. 131 (2011) 242–249, https:// doi.org/10.1016/j.ijpe.2009.10.010.
  • J. Roh, P. Hong, Y. Park, Organizational culture and supply chain strategy: a framework for effective information flows, J. Enterp. Inf. Manag. 21 (2008) 361–376, https://doi.org/10.1108/17410390810888651.
  • R. Macdonald, C.W. Zobel, S.A. Melnyk, S.E. Griffis, Supply chain risk and resilience: theory building through structured experiments and simulation, Int J. Prod. Res 56 (2018) 4337–4355, https://doi.org/10.1080/ 00207543.2017.1421787.
  • Jüttner, H. Peck, M. Christopher, Supply chain risk management: outlining an agenda for future research, Int. J. Logist. Res. Appl. 6 (2003) 197–210, https:// doi.org/10.1080/13675560310001627016.
  • Jüttner, S. Maklan, Supply chain resilience in the global financial crisis: an empirical study, Supply Chain Manag. 16 (2011) 246–259, https://doi.org/ 10.1108/13598541111139062.
  • Jüttner, Supply chain risk management: Understanding the business requirements from a practitioner perspective, Int. J. Logist. Manag. 16 (2005) 120–141, https://doi.org/10.1108/09574090510617385.
  • Kademani B.S., Centre for Development of Advanced Computing (Mumbai I, Bombay Science Librarians’ Association (India) , 2011 , Beyond librarianship: creativity, innovation, and discovery. B.R. Pub. Corp.
  • Kazancoglu, M. Sagnak, S. Kumar Mangla, Y. Kazancoglu, Circular economy and the policy: a framework for improving the corporate environmental management in supply chains, Bus. Strategy Environ. 30 (2021) 590–
  • Khalili-Damghani, P. Ghasemi, Uncertain centralized/decentralized production-distribution planning problem in multi-product supply chains: fuzzy mathematical optimization approaches, Ind. Eng. Manag. Syst. 15 (2) (2016) 156–
  • Khan, B. Burnes, Risk and supply chain management: creating a research agenda, Int. J. Logist. Manag. 18 (2007) 197–216, https://doi.org/10.1108/ 09574090710816931.
  • Kilubi, H.D. Haasis, Supply chain risk management research: avenues for further studies, Int. J. Supply Chain Oper. Resil. 2 (2016) 51, https://doi.org/ 10.1504/ijscor.2016.075899.
  • Kilubi, Investigating current paradigms in supply chain risk management – a bibliometric study, Bus. Process Manag. J. 22 (2016) 662–
  • Kilubi, The strategies of supply chain risk management – a synthesis and classification, Int. J. Logist. Res. Appl. 19 (2016) 604–
  • Kyung Jeong, M. Song, Y. Ding Yoo Kyung Jeong, Content-based author cocitation analysis, J. Inf. 8 (2014) 197–
  • Li, Y. Gong, Z. Wang, S. Liu, Big data and big disaster: a mechanism of supply chain risk management in global logistics industry, Int. J. Oper. Prod. Manag. 43 (2) (2023) 274–
  • Hudnurkar, S. Deshpande, U. Rathod, S.K. Jakhar, Supply chain risk classification schemes: a literature review, Oper. Supply Chain Manag. 10 (2017) 182–199.
  • Ivanov, A. Dolgui, B. Sokolov, M. Ivanova, Literature review on disruption recovery in the supply chain, Int J. Prod. Res 55 (2017) 6158–6174, https://doi. org/10.1080/00207543.2017.1330572ï.
  • Kamalahmadi, M.M. Parast, A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research, Int J. Prod. Econ. 171 (2016) 116–133, https://doi.org/10.1016/j. ijpe.2015.10.023.
  • Louis, M. Pagell, Categorizing Supply Chain Risks: Review, Integrated Typology and Future Research. Springer Series in Supply Chain Management, Springer Nature, 2019, pp. 329–366.
  • Nakano, A.K.W. Lau, A systematic review on supply chain risk management: using the strategy-structure-process-performance framework, Int. J. Logist. Res. Appl. 23 (2020) 443–473, https://doi.org/10.1080/13675567.2019.1704707.
  • Pournader, A. Kach, S. Talluri, A review of the existing and emerging topics in the supply chain risk management literature, Decis. Sci. 51 (2020) 867–919.
  • Schroeder, S. Lodemann, A systematic investigation of the integration of machine learning into supply chain risk management, Logistics (2021) 5.
  • Shekarian, M. Mellat Parast, An Integrative approach to supply chain disruption risk and resilience management: a literature review, Int. J. Logist. Res. Appl. 24 (2021) 427–455, https://doi.org/10.1080/13675567.2020.1763935.
  • Shokouhifar, M. Ranjbarimesan, Multivariate time-series blood donation/ demand forecasting for resilient supply chain management during COVID-19 pandemic, Clean. Logist. Supply Chain 5 (2022), 100078.
  • Shokouhifar, M. Sohrabi, M. Rabbani, S.M.H. Molanas, F. Werner, Sustainable phosphorus fertilizer supply chain management to improve crop yield and p use efficiency using an ensemble heuristic–metaheuristic optimization algorithm, Agronomy 13 (2) (2023) 565.
  • Shokouhifar, M.M. Sabbaghi, N. Pilevari, Inventory management in blood supply chain considering fuzzy supply/demand uncertainties and lateral transshipment, Transfus. Apher. Sci. 60 (3) (2021), 103103.
  • A. Kamran, R. Kia, F. Goodarzian, P. Ghasemi, A new vaccine supply chain network under COVID-19 conditions considering system dynamic: artificial intelligence algorithms, Socio-Econ. Plan. Sci. 85 (2023), 101378.
  • M. Parast, M. Shekarian, The Impact of Supply Chain Disruptions on Organizational Performance. A Literature Review, Springer Series in Supply Chain Management. Springer Nature, 2019, pp. 367–389.
  • N. Faisal, D.K. Banwet, R. Shankar, Supply chain risk mitigation: modeling the enablers, Bus. Process Manag. J. 12 (2006) 535–552, https://doi.org/10.1108/ 14637150610678113.
  • S. Shahbaz, A.G. Kazi, B. Othman, et al., Identification, assessment and mitigation of environment side risks for Malaysian manufacturing, Eng., Technol. Appl. Sci. Res. 9 (2019) 3851–3857.
  • S. Shahbaz, R.Z.R.M. Rasi, M.F. Ahmad, F. Bin, Rehman, What is supply chain risk management? A Rev. Adv. Sci. Lett. 23 (2017) 9233–9238.
  • S. Sodhi, B.G. Son, C.S. Tang, Researchers’ perspectives on supply chain risk management, Prod. Oper. Manag 21 (2012) 1–13, https://doi.org/10.1111/ j.1937-5956.2011.01251.x.
  • Mann M., Putsche V.2022 , Semiconductor-Supply Chain Deep Dive Assessment. USDOE Office of Policy (PO).
  • Manuj, J.T. Mentzer, Global supply chain risk management strategies, Int. J. Phys. Distrib. Logist. Manag. 38 (2008) 192–223, https://doi.org/10.1108/ 09600030810866986.
  • Manuj, J.T. Mentzer, Global supply chain risk management, J. Bus. Logist. 29 (2008) 133–155, https://doi.org/10.1002/j.2158-1592.2008.tb00072.
  • A. Choudhary, S. Singh, T. Schoenherr, M. Ramkumar, Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications, Ann. Oper. Res 322 (2023) 565–607.
  • J. van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics 84 (2010) 523–538, https://doi.org/ 10.1007/s11192-009-0146-3.
  • S. Hudin, H. Ayoup, N.F. Habidin, et al., Mitigation strategies in supply chain risk management: a literature review, Cent. Asia Cauc. 22 (2021) 481–500, https://doi.org/10.37178/ca-c.21.5.043.
  • Norrman, A. Wieland, The development of supply chain risk management over time: revisiting Ericsson, Int. J. Phys. Distrib. Logist. Manag. 50 (2020) 641–666, https://doi.org/10.1108/IJPDLM-07-2019-0219.
  • Norrman, U. Jansson, Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident, Int. J. Phys. Distrib. Logist. Manag. 34 (2004) 434–456, https://doi.org/10.1108/09600030410545463.
  • Ghasemi, K. Khalili-Damghani, A. Hafezolkotob, S. Raissi, A decentralized supply chain planning model: a case study of hardboard industry, Int. J. Adv. Manuf. Technol. 93 (2017) 3813–3836.
  • Manhart, J.K. Summers, J. Blackhurst, A meta-analytic review of supply chain risk management: assessing buffering and bridging strategies and firm performance, J. Supply Chain Manag. 56 (2020) 66–87, https://doi.org/10.1111/ jscm.12219.
  • Santos Ceryno, L. Felipe Scavarda, K. Klingebiel Professor, G. Yüzgülec, Supply chain risk management: a content analysis approach, Int. J. Ind. Eng. Manag. (IJIEM) 4 (2013) 141–150.
  • Senna, A. Reis, I.L. Santos, et al., A systematic literature review on supply chain risk management: is healthcare management a forsaken research field? Benchmarking 28 (2021) 926–956, https://doi.org/10.1108/BIJ-05-2020-0266.
  • Suryawanshi, P. Dutta, Optimization models for supply chains under risk, uncertainty, and resilience: a state-of-the-art review and future research directions, Transp. Res E Logist. Transp. Rev. (2022) 157, https://doi.org/ 10.1016/j.tre.2021.102553.
  • K. Tarei, J.J. Thakkar, B. Nag, Benchmarking the relationship between supply chain risk mitigation strategies and practices: an integrated approach, Benchmarking 27 (2020) 1683–1715, https://doi.org/10.1108/BIJ-12-2019- 0523.
  • Qazi A., Quigley J., Dickson A. , 2015 Supply Chain Risk Management: Systematic literature review and a conceptual framework for capturing interdependencies between risks. In: Proceedings of the 2015 International Conference on Industrial Engineering and Operations Management Dubai, United Arab Emirates (UAE), March 3 –
  • Rajagopal, S. Prasanna Venkatesan, M. Goh, Decision-making models for supply chain risk mitigation: a review, Comput. Ind. Eng. 113 (2017) 646–
  • Ritchie, C. Brindley, Supply chain risk management and performance: a guiding framework for future development, Int. J. Oper. Prod. Manag. 27 (2007) 303–322, https://doi.org/10.1108/01443570710725563.
  • Abbasi, M. Daneshmand-Mehr, A. Ghane Kanafi, Designing sustainable recovery network of end-of-life product during the COVID-19 pandemic: a real and applied case study, Discret. Dyn. Nat. Soc. (2022) 2022, https://doi.org/ 10.1155/2022/6967088.
  • Abbasi, M. Daneshmand-Mehr, A. Ghane Kanafi, Green closed-loop supply chain network design during the coronavirus (COVID-19) pandemic: a case study in the Iranian automotive industry, Environ. Model. Assess. 28 (1) (2023) 69–103, https://doi.org/10.1007/s10666-022-09863-0.
  • Abbasi, M. Daneshmand-Mehr, A. Ghane Kanafi, The sustainable supply chain of CO2 emissions during the coronavirus disease (COVID-19) pandemic, J. Ind. Eng. Int. 17 (4) (2021) 83–108, https://doi.org/10.30495/ JIEI.2022.1942784.1169.
  • Abbasi, M. Daneshmand-Mehr, K. Ghane, Designing a tri-objective, sustainable, closed-loop, and multi-echelon supply chain during the COVID-19 and lockdowns. Foundations of computing and decision sciences 48 (2023) 1.
  • Abbasi, S. Zahmatkesh, A. Bokhari, M. Hajiaghaei-Keshteli, Designing a vaccine supply chain network considering environmental aspects, J. Clean. Prod. (2023), 137935, https://doi.org/10.1016/j.jclepro.2023.137935.
  • Benzidia, N. Makaoui, O. Bentahar, The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance, Technol. Forecast Soc. Change 165 (2021), 120557.
  • DuHadway, S. Carnovale, Malicious Supply Chain Risk: A Literature Review and Future Directions, Springer Series in Supply Chain Management. Springer Nature,, 2019, pp. 221–231.
  • Kabir, A fuzzy data-driven reliability analysis for risk assessment and decisionmaking using Temporal Fault Trees, Decis. Anal. J. (2023), 100265, https://doi. org/10.1016/j.dajour.2023.100265.
  • Mandal, The influence of organizational culture on healthcare supply chain resilience: moderating role of technology orientation, J. Bus. Ind. Mark. 32 (2017) 1021–1037, https://doi.org/10.1108/JBIM-08-2016-0187.
  • Prakash, G. Soni, A.P.S. Rathore, A critical analysis of supply chain risk management content: a structured literature review, J. Adv. Manag. Res. 14 (2017) 69–90.
  • Rao, T.J. Goldsby, Supply chain risks: a review and typology, Int. J. Logist. Manag. 20 (2009) 97–123, https://doi.org/10.1108/09574090910954864.
  • Safaei, P. Ghasemi, F. Goodarzian, M. Momenitabar, Designing a new multiechelon multi-period closed-loop supply chain network by forecasting demand using time series model: a genetic algorithm, Environ. Sci. Pollut. Res. 29 (53) (2022) 79754–79768.
  • F. Nimmy, O.K. Hussain, R.K. Chakrabortty, et al., Explain ability in supply chain operational risk management: a systematic literature review, Knowl. Based Syst. (2022) 235, https://doi.org/10.1016/j.knosys.2021.107587.
  • M. Wagner, C. Bode, An empirical examination of supply chain performance along several dimensions of risk, J. Bus. Logist. 29 (2008) 307–325, https://doi. org/10.1002/j.2158-1592.2008.tb00081.
  • M. Wagner, C. Bode, An empirical investigation into supply chain vulnerability, J. Purch. Supply Manag. 12 (2006) 301–312, https://doi.org/10.1016/j. pursup.2007.01.004.
  • Septiani, Y. Herdiyeni, L. Haditjaroko, Method and approach mapping for agrifood supply chain risk management: a literature review, Int. J. Supply Chain Manag. 5 (2016) 51–
  • Shishodia, R. Sharma, R. Rajesh, Z.H. Munim, Supply chain resilience: a review, conceptual framework and future research, Int. J. Logist. Manag. (2021), https://doi.org/10.1108/IJLM-03-2021-0169.
  • Sibevei, A. Azar, M. Zandieh, et al., Developing a risk reduction support system for health system in Iran: a case study in blood supply chain management, Int J. Environ. Res Public Health (2022) 19, https://doi.org/10.3390/ijerph19042139.
  • Simangunsong, L.C. Hendry, M. Stevenson, Supply-chain uncertainty: a review and theoretical foundation for future research, Int J. Prod. Res 50 (2012) 4493–
  • Singh G., Wahid N.A. , 2014 , Supply Chain Risk Management: A Review.
  • H. Tran, M. Dobrovnik, S. Kummer, Supply chain risk assessment: a content analysis-based literature review, Int. J. Logist. Syst. Manag. 31 (2018) 562–591, https://doi.org/10.1504/IJLSM.2018.096088.
  • Tang, B. Tomlin, The power of flexibility for mitigating supply chain risks, Int J. Prod. Econ. 116 (2008) 12–27, https://doi.org/10.1016/j.ijpe.2008.07.008.
  • Tang, S. Nurmaya Musa, Identifying risk issues and research advancements in supply chain risk management, Int J. Prod. Econ. 133 (2011) 25–34, https://doi. org/10.1016/j.ijpe.2010.06.013.
  • R. de Oliveira, F.A.S. Marins, H.M. Rocha, V.A.P. Salomon, The ISO 31000 standard in supply chain risk management, J. Clean. Prod. 151 (2017) 616–633.
  • R. De Oliveira, L.S. Espindola, F.A.S. Marins, Analysis of supply chain risk management research, Gest. e Prod. 25 (2018) 671–695, https://doi.org/ 10.1590/0104-530×3515-16.
  • Vafadarnikjoo, M.A. Moktadir, S.K. Paul, S.M. Ali, A novel grey multi-objective binary linear programming model for risk assessment in supply chain management, Supply Chain Anal. 2 (2023), 100012, https://doi.org/10.1016/j. sca.2023.100012.
  • Vanany, N. Pujawan, Supply chain risk management: literature review and future research, Int’l J. Inf. Syst. Supply Chain Manag. 2 (2009) 16–
  • Wilson, V. Barbat, The supply chain manager as political-entrepreneur, Ind. Mark. Manag. 49 (2015) 67–79, https://doi.org/10.1016/j. indmarman.2015.05.034.
  • Zhao, M. Ji, B. Feng, Smarter supply chain: a literature review and practices, J. Data, Inf. Manag. 2 (2020) 95–110, https://doi.org/10.1007/s42488-020- 00025-z.
  • Zhu, H. Krikke, M.C.J. Cani¨els, Integrated supply chain risk management: a systematic review, Int. J. Logist. Manag. 28 (2017) 1123–1141, https://doi.org/ 10.1108/IJLM-09-2016-0206.