A critical analysis of the integration of blockchain and artificial intelligence for supply chain.

Charles, V., A. Emrouznejad, T. Gherman (2023) A critical analysis of the integration of blockchain and artificial intelligence for supply chain, Annals of Operations Research, https://doi.org/10.1007/s10479-023-05169-w

 

 

List of papers cited in this article:

  • Abbas, K., Afaq, M., Khan, T. A., & Song, W.-C. (2020). A blockchain and machine learning-based drug supply chain management and recommendation system for smart pharmaceutical industry. Electronics (switzerland), 9(5), 852.
  • Abeyratne, S. A., & Monfared, R. P. (2016). Blockchain ready manufacturing supply chain using distributed ledger. International Journal of Renewable Energy Technology, 5(9), 1–10.
  • Ahamed, N. N., & Vignesh, R. (2022). Smart agriculture and food industry with blockchain and artificial intelligence. Journal of Computer Science, 181(1), 1–17.
  • Ahmed, I., Zhang, Y., Jeon, G., Lin, W., Khosravi, M. R., & Qi, L. (2022). A blockchain-and artificial intelligence-enabled smart IoT framework for sustainable city. International Journal of Intelligent Sys- tems, 37(9), 5473–6605.
  • Angeles, R. (2018). Blockchain-based healthcare: Three successful proof-of-concept pilots worth considering. Journal of Information Technology Management, 27(3), 47–83.
  • Bamakan, S. M. H., Faregh, N., & Zareravasan, A. (2021). Di-ANFIS: An integrated blockchain-IoT-big data- enabled framework for evaluating service supply chain performance. Journal of Computational Design and Engineering, 8(2), 676–690.
  • Banerjee, M., Lee, J., & Choo, K. K. R. (2018). A blockchain future for internet of things security: A position paper. Digital Communications and Networks, 4(3), 149–160.
  • Baucherel, K. (2018). Blockchain from hype to help. ITNOW, 60(4), 4–7.
  • Baz, M., Khatri, S., Baz, A., Alhakami, H., Agrawal, A., & Khan, R. A. (2021). Blockchain and artificial intelligence applications to defeat COVID-19 pandemic. Computer Systems Science and Engineering, 40(2), 691–702.
  • Bechtsis, D., Tsolakis, N., Iakovou, E., & Vlachos, D. (2022). Data-driven secure, resilient and sustainable supply chains: Gaps, opportunities, and a new generalised data sharing and data monetisation framework. International Journal of Production Research, 60(14), 4397–4417.
  • Bragadeesh, S. A., & Umamakeswari, A. (2022). Secured vehicle life cycle tracking using blockchain and smart contract. Computer Systems Science and Engineering, 41(1), 1–18.
  • Chanson, M., Bogner, A., Bilgeri, D., Fleisch, E., & Wortmann, F. (2019). Blockchain for the IoT: Privacy- preserving protection of sensor data. Journal of the Association for Information Systems, 20(9), 1272–1307.
  • Charles, V., & Gherman, T. (2018). Big data and ethnography: Together for the greater good. In A. Emrouznejad & V. Charles (Eds.), Big data for the greater good (pp. 19–34). Springer.
  • Charles, V., Gherman, T., & Paliza, J. C. (2019). Stakeholder involvement for public sector productivity enhancement: Strategic considerations. ICPE Public Enterprise Half-Yearly Journal, 24(1), 77–86.
  • Charles, V., Emrouznejad, A., Gherman, T., & Cochran, J. (2022a). Why data analytics is an art. Significance, 19(6), 42–45.
  • Charles, V., Gherman, T., & Emrouznejad, A. (2022b). Characteristics and trends in big data for service operations management research: A blend of descriptive and bibliometric analysis. In A. Emrouznejad & V. Charles (Eds.), Big data and blockchain for service operations management. Studies in big data (Vol. 98, pp. 1–18). Springer.
  • Chen, R. Y. (2018). A traceability chain algorithm for artificial neural networks using T-S fuzzy cognitive maps in blockchain. Future Generation Computer Systems, 80, 198–210.
  • Chen, H., Chen, Z., Lin, F., & Zhuang, P. (2021). Effective management for blockchain-based agri-food supply chains using deep reinforcement learning. IEEE Access, 9(9363883), 36008–36018.
  • Chen, H. S., Jarrell, J. T., Carpenter, K. A., Cohen, D. S., Huang, X., & Hospital, M. G. (2019). Blockchain in healthcare: A patient-centered model. Biomedical Journal of Scientific & Technical Research, 20, 15017–15022.
  • Chidepatil, A., Bindra, P., Kulkarni, D., Qazi, M., Kshirsagar, M., & Sankaran, K. (2020). From trash to cash: How blockchain and multi-sensor-driven artificial intelligence can transform circular economy of plastic waste? Administrative Sciences, 10(2), 23.
  • Cole, R., Stevenson, M., & Aitken, J. (2019). Blockchain technology: Implications for operations and supply chain management. Supply Chain Management: International Journal, 24(4), 469–483.
  • Cottrill, K. (2018). The benefits of blockchain: Fact or wishful thinking? Supply Chain Management Review, 22(1), 20–25.
  • Crosby, M., Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). Blockchain technology: Beyond bitcoin.
  • Applied Innovation, 2, 6–9.
  • Dadi, V., Nikhil, S. R., Mor, R. S., Agarwal, T., & Arora, S. (2021). Agri-food 4.0 and innovations: Revamping the supply chain operations. Production Engineering Archives, 27(2), 75–89.
  • Dey, S., Saha, S., Singh, A. K., & McDonald-Maier, K. (2022). SmartNoshWaste: Using blockchain, machine learning, cloud computing and QR Code to reduce food waste in decentralized web 3.0. Enabled Smart Cities Smart Cities, 5(1), 162–176.
  • Dillenberger, D. N., Novotny, P., Zhang, Q., Jayachandran, P., Gupta, H., Hans, S., Verma, D., Chakraborty, S., Thomas, J. J., Walli, M. M., Vaculin, R., & Sarpatwar, K. (2019). Blockchain analytics and artificial intelligence. IBM Journal of Research and Development, 63(2), 8645631.
  • Dong, F., Zhou, P., Liu, Z., Shen, D., Xu, Z., & Luo, J. (2017). Towards a fast and secure design for enterprise- oriented cloud storage systems. Concurrency and Computation: Practice and Experience, 29(19), e4177.
  • Dwivedi, S. K., Roy, P., Karda, C., Agrawal, S., & Amin, R. (2021). Blockchain-based internet of things and industrial IoT: A comprehensive survey. Security and Communication Networks, 2021, 7142048.
  • Ebinger, F., & Omondi, B. (2020). Leveraging digital approaches for transparency in sustainable supply chains: A conceptual paper. Sustainability, 12, 6129.
  • Eluubek, I., Song, H., Vajdi, A., Wang, Y., & Zhou, J. (2021). Blockchain for consortium: A practical paradigm in agricultural supply chain system. Expert Systems with Applications, 184, 115425.
  • Fahimnia, B., Pournader, M., Siemsen, E., Bendoly, E., & Wang, C. (2019). Behavioral operations and supply chain management—A review and literature mapping. Decision Sciences, 50(6), 1127–1183.
  • Fan, Y., & Stevenson, M. (2018). A review of supply chain risk management: Definition, theory, and research agenda. International Journal of Physical Distribution & Logistics Management, 48(3), 205–230.
  • Fusco, A., Dicuonzo, G., Dell’Atti, V., & Tatullo, M. (2020). Blockchain in healthcare: Insights on COVID-19.
  • International Journal of Environmental Research and Public Health, 17(19), 7167.
  • Gohil, D., & Thakker, S. V. (2021). Blockchain-integrated technologies for solving supply chain challenges.
  • Modern Supply Chain Research and Applications, 3(2), 78–97.
  • Griggs, K. N., Ossipova, O., Kohlios, C. P., Baccarini, A. N., Howson, E. A., & Hayajneh, T. (2018). Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. Journal of Medical Systems, 42, 1–7.
  • Grimm, J. H., Hofstetter, J. S., & Sarkis, J. (2016). Exploring sub-suppliers’ compliance with corporate sustainability standards. Journal of Cleaner Production, 112, 1971–1984.
  • Heister, S., & Yuthas, K. (2021). How blockchain and AI enable personal data privacy and support cybersecu- rity. In T. M. Fernández-Caramés & P. Fraga-Lamas (Eds.), Advances in the convergence of blockchain and artificial intelligence. IntechOpen.
  • Hopkins, J. L. (2021). An investigation into emerging industry 4.0 technologies as drivers of supply chain innovation in Australia. Computers in Industry, 125, 103323.
  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846.
  • Jabarulla, M. Y., & Lee, H.-N. (2021). A blockchain and artificial intelligence-based, patient centric healthcare system for combating the COVID-19 pandemic: Opportunities and applications. Healthcare, 9, 1019.
  • Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable industry 4.0 frame- work: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425.
  • Kamble, S. S., Gunasekaran, A., Parekh, H., Mani, V., Belhadi, A., & Sharma, R. (2022). Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework. Technological Forecasting and Social Change, 176, 121448.
  • Khadke, S., Gupta, P., Rachakunta, S., Mahata, C., Dawn, S., Sharma, M., Verma, D., Pradhan, A., Krishna.
  • M. S., Ramakrishna, S., Chakrabortty, S., Saianand, G., Sonar, P., Biring, S., Dash, J. K., & Dala- pati, G. K. (2021). Efficient plastic recycling and remolding circular economy using the technology of trust–blockchain. Sustainability (switzerland), 13(16), 9142.
  • Khan, P. W., Byun, Y.-C., & Park, N. (2020). IoT-blockchain enabled optimized provenance system for food industry 4.0 using advanced deep learning. Sensors (switzerland), 20(10), 2990.Lezoche, M., Hernandez, J. E., Diaz, M. D. M. E. A., Panetto, H., & Kacprzyk, J. (2020). Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Computers in Industry, 117, 103187.
  • Lee, C.-H., Yang, H.-C., Wei, Y.-C., & Hsu, W.-K. (2021). Enabling blockchain based scm systems with a real time event monitoring function for preemptive risk management. Applied Sciences (switzerland), 11(11), 4811.
  • Li, Z., Guo, H., Barenji, A. V., Wang, W. M., Guan, Y., & Huang, G. Q. (2020). A sustainable production capability evaluation mechanism based on blockchain, LSTM, analytic hierarchy process for supply chain network. International Journal of Production Research, 58(24), 7399–7419.
  • Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2021a). From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322–4334.
  • Liu, Y., Zhang, S., Chen, M., Wu, Y., & Chen, Z. (2021b). The sustainable development of financial topic detection and trend prediction by data mining. Sustainability (switzerland), 13(14), 7585.
  • Liu, X. J., Zhang, L. A., & Hong, S. (2011). Global biodiversity research during 1900–2009: A bibliometric analysis. Biodiversity and Conservation, 20(4), 807–826.
  • Luo, S., & Choi, T.-M. (2022). Operational research for technology-driven supply chains in the industry 4.0 Era: Recent development and future studies. Asia-Pacific Journal of Operational Research, 39(1), 2040021.
  • Mao, D., Wang, F., Hao, Z., & Li, H. (2018). Credit evaluation system based on blockchain for multiple stakeholders in the food supply chain. International Journal of Environmental Research and Public Health, 15(8), 1627.
  • Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & Delgado López-Cózar, E. (2018). Google scholar, web of science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12(4), 1160–1177.
  • Martínez, J., & Durán, J. M. (2021). Software supply chain attacks, a threat to global cybersecurity: SolarWinds’ case study. International Journal of Safety and Security Engineering, 11(5), 537–545.
  • Monteiro, E. S., Righi, R. D. R., Barbosa, J. L. V., & Alberti, A. M. (2021). APTM: A model for pervasive traceability of agrochemicals. Applied Sciences (switzerland), 11(17), 8149.
  • Mubin, O., Arsalan, M., & Al Mahmud, A. (2018). Tracking the follow-up of work in progress papers.
  • Scientometrics, 114, 1159–1174.
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved from https://bitcoin.org/en/ bitcoin-paper.
  • Nandi, S., Hervani, A. A., Helms, & M. M., Sarkis, J. (2021). Conceptualising Circular economy performance with non-traditional valuation methods: Lessons for a post-Pandemic recovery. International Journal of Logistics Research and Applications. (in Press).
  • Nguyen, D. C., Ding, M., Pathirana, P. N., & Seneviratne, A. (2021). Blockchain and AI-based solutions to combat coronavirus (COVID-19)-like epidemics: A survey. IEEE Access, 9, 95730–95753.
  • Odekanle, E. L., Fakinle, B. S., Falowo, O. A., & Odejobi, O. J. (2022). Challenges and benefits of combining AI with blockchain for sustainable environment. In K. Kaushik, A. Tayal, S. Dahiya, & A. O. Salau (Eds.), Sustainable and advanced applications of blockchain in smart computational technologies (pp. 43–62). Chapman and Hall/CRC.
  • Partida, B. (2018). Blockchain’s great potential: Blockchain’s potential is immense, but most organizations have not yet made the investment. Supply Chain Management Review, 22(1), 51–53.
  • Pilkington, M. (2016). Blockchain technology: Principles and applications. In F. X. Olleros & M. Zhegu (Eds.),
  • Research handbook on digital transformations (pp. 225–253). Edward Elgar.
  • Pimenidis, E., Patsavellas, J., & Tonkin, M. (2021). Blockchain and artificial intelligence managing a secure and sustainable supply chain. In H. Jahankhani, A. Jamal, & S. Lawson (Eds.), Cybersecurity, privacy and freedom protection in the connected world advanced sciences and technologies for security applications. Springer.
  • Ploug, T., & Holm, S. (2020). The four dimensions of contestable AI diagnostics—A patient-centric approach to explainable AI. Artificial Intelligence in Medicine, 107, 101901.
  • Pournader, M., Kach, A., & Talluri, S. (2020). A review of the existing and emerging topics in the supply chain risk management literature. Decision Sciences, 51(4), 867–919.
  • Putri, A. N., Hariadi, M., & Wibawa, A. D. (2020). Smart agriculture using supply chain management based on hyperledger blockchain. Conference Series: Earth and Environmental Science, 466, 1–9.
  • Rabah, K., Research, M., & Nairobi, K. (2018). Convergence of AI, IoT, big data and blockchain: A review.
  • The Lake Institute Journal, 1(1), 1–18.
  • Ramezani, J., & Camarinha-Matos, L. M. (2020). Approaches for resilience and antifragility in collaborative business ecosystems. Technological Forecasting and Social Change, 151, 119846.
  • Reshma, S. R. J., & Pillai, A. S. (2018). Proceedings of the Eighth International Conferenceon Soft Computing and Pattern Recognition (SoCPaR 2016), 614, no. SoCPaR 2016.
  • Reyes, P. M., Visich, J. K., & Jaska, P. (2020). Managing the dynamics of new technologies in the global supply chain. IEEE Engineering Management Review, 48(1), 156–162.
  • Rodríguez-Espíndola, O., Chowdhury, S., Beltagui, A., & Albores, P. (2020). The potential of emergent dis- ruptive technologies for humanitarian supply chains: The integration of blockchain, artificial intelligence and 3D printing. International Journal of Production Research, 58(15), 4610–4630.
  • Roosan, D., Wu, Y., Tatla, V., Li, Y., Kugler, A., Chok, J., & Roosan, M. R. (2022). Framework to enable pharmacist access to health care data using Blockchain technology and artificial intelligence. Journal of the American Pharmacists Association, 62(4), 1124–1132.
  • Runzel, M. A. S., Hassler, E. E., Rogers, R. E. L., Formato, G., & Cazier, J. A. (2021). Designing a smart honey supply chain for sustainable development. IEEE Consumer Electronics Magazine, 10(4), 69–78. Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135.
  • Saurabh, S., & Dey, K. (2021). Blockchain technology adoption, architecture, and sustainable agri-food supply chains. Journal of Cleaner Production, 284, 124731.
  • Seuring, S., Sarkis, J., Müller, M., & Rao, P. (2008). Sustainability and supply chain management—an intro- duction to the special issue. Journal of Cleaner Production, 16(15), 1545–1551.
  • Sgantzos, K., & Grigg, I. (2019). Artificial intelligence implementations on the blockchain. Use cases and future applications. Future Internet, 11(8), 170.
  • Shahbazi, Z., & Byun, Y.-C. (2021). A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics (switzerland), 10(14), 1–21.
  • Sharma, A., Bahl, S., Bagha, A. K., Javaid, M., Shukla, D. K., & Haleem, A. (2020a). Blockchain technol- ogy and its applications to combat COVID-19 pandemic. Research on Biomedical Engineering, 38(1), 173–180.
  • Sharma, R., Kamble, S. S., & Gunasekaran, A. (2018). Big GIS analytics framework for agriculture sup- ply chains: A literature review identifying the current trends and future perspectives. Computers and Electronics in Agriculture, 155, 103–120.
  • Sharma, R., Kamble, S. S., Gunasekaran, A., Kumar, V., & Kumar, A. (2020b). A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Computers and Operations Research, 119, 104926.
  • Singh, P. D., Kaur, R., Dhiman, G., Bojja, G. R. (2021). BOSS: A new QoS aware blockchain assisted framework for secure and smart healthcare as a service. Expert Systems, e12838.
  • Sivarethinamohan, R., & Sujatha, S. (2021). Unraveling the potential of artificial intelligence-driven blockchain technology in environment management. In G. Manik, S. Kalia, S. K. Sahoo, T. K. Sharma, & O. P. Verma (Eds.), Advances in mechanical engineering. Lecture notes in mechanical engineering. Springer.
  • Sobb, T., Turnbull, B., & Moustafa, N. (2020). Supply chain 4.0: A survey of cyber security challenges, solutions and future directions. Electronics (switzerland), 9(11), 1–31.
  • Spieske, A., & Birkel, H. (2021). Improving supply chain resilience through industry 4.0: A systematic literature review under the impressions of the COVID-19 pandemic. Computers & Industrial Engineering, 158, 107452.
  • Steiner, J., & Baker, J. (2015). Blockchain: The solution for transparency in product supply chains. https:// www.provenance.org/whitepaper.
  • Sun, M., & Zhang, J. (2020). Research on the application of block chain big data platform in the construction of new smart city for low carbon emission and green environment. Computer Communications, 149, 332–342.
  • Suroso, A. I., Rifai, B., & Hasanah, N. (2021). Traceability system in hydroponic vegetables supply chain using blockchain technology. International Journal of Information and Management Sciences, 32(4), 347–361.
  • Tian, F. (2016). An agri-food supply chain traceability system for china based on RFID & blockchain tech- nology. In 13th International Conference on Service Systems and Service Management (ICSSSM).
  • Tripoli, M., & Schmidhuber, J. (2018). Emerging opportunities for the application of blockchain in the agri- food industry agriculture. Food and Agriculture Organization of the United Nations (August).
  • Unal, D., Hammoudeh, M., Khan, M. A., Abuarqoub, A., Epiphaniou, G., & Hamila, R. (2021). Integration of federated machine learning and blockchain for the provision of secure big data analytics for Internet of Things. Computers and Security, 109, 102393.
  • Wang, Y. (2021). Research on supply chain financial risk assessment based on blockchain and fuzzy neural networks. Wireless Communications and Mobile Computing, 2021, 5565980.
  • Wong, S., Yeung, J. K. W., Lau, Y.-Y., & So, J. (2021). Technical sustainability of cloud-based blockchain integrated with machine learning for supply chain management. Sustainability (switzerland), 13(15), 8270.
  • Yong, B., Shen, J., Liu, X., Li, F., Chen, H., & Zhou, Q. (2020). An intelligent blockchain-based system for safe vaccine supply and supervision. International Journal of Information Management, 52, 102024.
  • Zhang, P., Liu, X., Li, W., & Yu, X. (2021a). Pharmaceutical cold chain management based on blockchain and deep learning. Journal of Internet Technology, 22(7), 1531–1542.
  • Zhang, Z., Song, X., Liu, L., Yin, J., Wang, Y., & Lan, D. (2021b). Recent Advances in blockchain and artificial intelligence integration: Feasibility analysis, research issues, applications, challenges, and future work. Security and Communication Networks, 2021, 9991535.